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Abstract

Recent developments in Survey Sampling have presented the estimation of the population total (or the mean)

in a new perspective called "predictive estimation". In this expository article, the highlights ofthe various contribu

tions in this area have been reviewed and knit together to facilitate appreciation of a number of interesting results

under the "fixed population set-up" and the "superpopulation" set-up.
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1 U.P. Visiting Propesor

We consider a population of N units arbitrarily

labelled 1, 2, ..., N. Let the characteristic of interest say,

ytake the Yi on the ith unit. We Wishto estimate the

N

population total Y = k Yi from observations made on

i =1

the units of a sample s (obtained by any sampling scheme

whatsoever). The criteria of optimality such as unbiased

ness and minimum variance are usually invoked to derive

or assess an estimator without consideration to the fact

that the sampling procedure divides the population into

a completely known part and a com~letely unknown part

in respect of the characteristic y.. His precisely in pur

suance of such a consideration that the predictive theory

of estimation (also called "prediction approach") has

been brought about to playa pivotal role in shedding

light on the estimation of a population total (or the.

population mean). Writing the total as

y.= k Yi + k Yi

i e s leS

.....

k.Yi + v;
leS

(1.1)

we note that, in order to estimate Y, the problem essen

tially is to predict the second component on the right

side, viz., I Yi or Y« (s being the complement of s)

1 e s

since. the first one on the right side is exactly known.

Rather, we have to predict Y, on the basis of k Yi and,

ies

in order that the latter should provide information on the

former, there must be s~me link between the two com

ponents. Such a link is available to us in survey sampling

in the form of a sampling design or asuperpopulation

model or simply a model. We may designate Y, as "un

known component" or "unobserved residuum". In what

follows, we shall present and scan the different ap

proaches with regard to the prediction of this unknown

component.

i. Predictive Estimation

In the context of the superpopulation set-up, Royall.
(1970) and, in the contextof the fixed population set-up,

Basu (1971) were concerned with the prediction of the

unknown component, Ys, each in his own way as would

be clear hereinafter. Basu (1971) has suggested what has

come to be known as "predictive approach" [vide Smith

(1976)] for examining the plausibility and face-validity of

an estimator. The approach presents the estimation of
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Model-free Prediction

as

i e s

where Yi and Ys are the implied predictors of Yi and Ys,

respectively.

the population total (or the mean) in an .interesting

perspective which was described by Basu (1971) as the

"heart ofthe matter. In his approach designated "predic

tion theory or approach", Royall (1970) worked out an

optimal predictor of Ys (and hence that of Y) under a

specified superpopulation model.

We would nowdiscuss the problem of predicting the

unknown component under the following set-ups:

A. The Fixed Population Set-up (F-P Set-up): The value

of the characteristic of interest, under this set-up, for

each unit of the population is a fixed but unknown real

number.

An estimator Y of Y given in (1.1) can be expressed

leS

~di = N-n

ies

Employingan optimisation method to achieve the mini

mum variance subject to unbiasedness, we obtain

di = (N - n)/n and hence the usual simple expansion es

timator Ny of Y.

Given an auxiliaryvariable x (Xi being the value for

unit i) related to y, the well-knownratio and regression

[i.e. ynlxn (Xs)] exploits the information on the nth unit

only,and not on all the n units, for the purpose of predict-
"

ing Ys and as such, it lacks in plausibility. Howe~er, if

we consider a predictor based on suitable pooling of the

sample observations, i.e., (~ Yi l ~ Xj) Xs for predicting

iss ies

Ys'; then we get the conventional ratio estimator of Y.

It would be interesting to scan certain widely used

conventional estimators from the viewpoint as to

whether they conform to the predictive form or not.

Starting with simple random sampling without replace

ment, we note that the simple expansion estimator of the

population total is expressible as

Yran = Ny = ~ Yi + ~ y,

ies lES

implying that the predictor of Yi in unobserved residuum

isy(the sample mean ofy-values), which is quite sensible

under the circumstances when no extra or ancillary in

formation is available.

In regard to simple random sampling without re

placement, we maytreat the problem of predicting Ys as

being essentiallyone of propounding ({linearfunction of .

sample observations, say~ diYi where dr's are to be

ies

determined optimallyso that the function has minimum

variance and is unbiased for the expectation of Ys, i.e.

E (~diYi) = E(Ys)

(2.1)

y = ~ Yi + v,

Y = ~Yi + ~ Yi

i s s i s s

or

Basu (1971)examines the Desraj ordered estimator

from the "predictive" standpoint and finds it non-con

forming. The Desraj ordered estimator is defmed by

YD = YI + Y2 + + Yn-l + ynlPn (l-PI -pz- ... - Pn-l)

= YI + Y2 + + Yn + ynlpn (1-PI-P2- ... - Pn)
where YI, Y2, ..., Yn are the observations on the n units in

order of their draw in the sample, and PI, pz, ..., Pn are

the initial probabilities of the respective units in the

sample. To fix the idea, let Pi be proportional to some

measure of size,say,Xiand then, on comparing with (2.1),

it can be observed from the Desraj estimator that the

predictor of Ys is ynl Xn (Xs) where Xs is the sum of X

values on the non-sampled units. Here, the predictor
,
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estimators for simple random sampling can, respective

ly,be split as

y y

Yr = N --- X = I yi + I ---Xi

if we employ a linear predictor (i.e., a linear function of

sample observations) for Ys with a viewto minimisingits

variance subject to unbiasedness, i.e.,

E ( I diYi) = E(Ys) = E(Y - I Yi)

•

X iss iss X ie s ies

'lTi

di = '------

I 'lTi di yi = Y - I 'lTiYi

i=1 i=l

and this leads to the Horvitz-Thompson estimator.

In the above context, we wish to suggest that,

wherever possible, we should try to predict Y s by

employinga linear predictor whose variance is sought to

be minimised subject to unbiasedness.

Some other knownestimators, e.g., the ratio-type es

timator and the usual estimator in simple random sam

plingwith replacement also lack in predictive character.

It is, therefore, not surprising that some of the estimators

no~ conforming to the predictive form have generated a

lot of discussion and controversy.

An interesting aspect of the predictive theory of es

timation is that, in respect of a conventional estimator as

is not endowed with a predictive form, it would be a

worthwhileidea ifone works out a "predictive" estimator

ofY by planting an "apt" predictor of y; (or Ys) in (2.1).

To design such as "apt" predictor, we can exploit the

background information that isavailableto us in the form

of the conventional estimator. Subsequently, a com

parison of the conventional and the corresponding

predictive estimate-s in respect of bias and mean square

error maybe undertaken. As a matter of fact, some work

in this direction has already been initiated [see Srivas

tava (198~), Agrawal and Jain (1987), Agrawal &

Kulldorff (1987)].
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and

and

YI = N [y + b(X - x)] = I Yi + I [y + b(Xj - x)],

ies ies

where x and X are the sample and population means of

x-values, respectively, and b is the sample regression

coefficient. The predictors of Yi in these two cases are

intuitivelyappealing and compatible with the situations

visualisedfor the use of these estimators, and thus these

estimators are reasonably endowed with a predictive

form.

We would nowallude to some estimators whichlack

in a predictive character such as the product and the

Horvitz-Thompson estimators which could, respective

ly,be decomposed as

yx yx N-n X,

YProd = N ---- = I yi + I --- -------------

X ies ies Xs X x (N-n)

Yi 1 Yi (X- OXi

YIIT = I ---= I Yi + IXi --I ---1--------1 ,
ies 'lTi IES iss l n ies xi \ X-ox)

where 'lTi is the probability of inclusion of unit i in the

sample, and is taken proportional to Xi, i.e., 'lTi = oxJX

and X and Xs are, respectively,the population total ofx

values .and the mean of x-values for the non-surveyed

units. Neither of these estimators apparently conforms

to a predictive form, for there is no appealing explana

tion 'in favour of the respective preditors for Ys.

However, in the case of the Horvits-Thompson es

timator, we find, on a closer scrunity, that this is the only

unbiased estimator under the proposed sampling design
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Prediction for Incomplete Data

It is well known that the Hansen-Hurwitz technique

is applied to tackle incomplete data due to non-response

in mail surveys. This technique consists in collecting in

formation from a subsample of non-!espondents, say, m

out of n2 non-respondents, in the second attempt, while

n1 in a sample 'of size nt have responded in the first at

tempt. To clarify the matter, we introduce the following

notations:

SI :. set of those sampled and responding in the first

attempt, its size being ni .

S2: set of those sampled and non-responding in the

first attempt, its size being nz,

S3: set of the non-sampled units.

Here, the predictive estimator of Y can be viewed as

y = ~ Yi + ~ Yi + ~ Yi.

1 B S1 i E S2 i E S3

We can now split the customaryHansen-Hurwitz es

timator as

YHH = Ny· = !. Yi + ~ Ym + ~ y".

i E SI 1 E S2 i E S3

where y* = (nlYnl + n2Ym)/(nl + n2), and Ynl and Ym

are the means based on ni and m units, respectively. In

this case, it would be quite natural to predict Yi in S2 by

Ym and Yi in S3 by y•. Thus, YHH is'predictive in charac

ter.

Predictive Estimation in Double Sampling Procedures

Agrawal and Jain (1987) have examined the ratio ,
ratio-type and regression estimators in double sampling

procedures from the predictive standpoint under the fol

lowing two approaches:

(A) Having drawn the first-phase sample SI, the

second-phase sample S2 is drawn as a sub-sample from

the first-phase sample.

(B) Having drawn the first-phase sample SI, the

second-phase sample S2· is drawn independently from

the whole population.

The authors have split the population total under the

respective approaches (A) lind (B) as

YA = ~Yi t ~Yi + ~Yi

i E S2 1 E S1S2 i E SI

and,

YB = ~ Yi + ~ Yi + ~ yi

1 B S2 i E S3 i E 54

where S3 and Sot are the sets containing (v-n) and (N-v)

units (v being the number of distinct units in the two

samples SI and S2"), and SI and S2are the co~plements
of SI and S2, respectively. Since the first component in

. both YA and YB is known, the predictors of YA and Yo

can be written as

YA = ~ yi + ~ Yi + ~ Yi

i e S2 i e S1S2 i e SI

and,

YB = ~ Yi + ~ Yi + ~ Yi.

1 E S2 i E S3 i E 54

The ratio and regression estimators under approach (A)

are expressible as

Y Y Y

Yrd N -- x' = ~Yi + ~ --- Xi + ~ -- x'
l

X 1 E S2 1 E S1S2 x lESI x

and

Yld = N(y + b (x' - x) =~ yi + ~ (y + b(Xi - x))

i E S2 1 E S1S2

+ ~ (y + b(x'- x)),

1 E SI

where x', is the mean of the auxiliary variable based on

S1 and b is the sample regression coefficient of yon x.

Here, the predictors of Yi in the second and third com

ponents of both the estimators are quite intuitive and

sensible, and as such, these estimators are endowed with
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predictive form. Similarly, these two estimators unfold

themselves in predictive form under approach (B).

The customary ratio-type estimator (biased). in

double sampling is found to be lacking in predictive form

under both the approaches (A) and (B). Agrawal and

Jain (1987) work out "predictive" ratio-type estimators

under the approaches (A) and (B), and compare their

biases with those of the conventional ratio-type es

timators.

MIodeD-llnllseclllPJrediction

The foregoing discussion under the F-P set-up was

model-free. However, one could use models under the

F-P set-up, and.consider the problem of prediction in the

presence of a model. Models have been employed in the

context of ratio and regression methods of estimation

[see Sukhatme and Sukhatme (1970, p. 146, p.197)].In

such cases, we choose, as usual, a linear predictor for Ys

and seek to achieve minimum variance coupled with un

biasedness under the specified models. For models just

referred to, we would arrive at the conventional ratio and

regression estimators.

18. The Superpopulation Sea-up (S-PSet-up):

Under this set-up, a random variable with a

specified stochastic structure is associated with each unit

of the population. The actual value observed on a

population unit is regarded as the realization ofrhis ran

dom variable.

I~ the context ofthe S-P set-up, it would be quite apt

to quote from Cassel et al. (1977) regarding the distinc

.tion between superpop~lation and Bayesian models.

The Bayesian models express personal subjective belief

in the form of a prior distribution YI, ..., YN, while the su

perpopulation models need not be Bayesian in this sense

12

and, at times, the latter could be as objective as some of

the models in classical statistical theory.

We would now consider the prediction of the un

known component when we specify, in respect of the su

perpopulation, some of its moments or its complete

distributional forni.

Speciflcatlon 011' moments

Royall (1970) invokes a superpopulation model to

predict Ys, and designates the inferential process as

"prediction approach" under the superpopulation

models are allowed a primary and dominent role, while

the sampling designs are relegated to the background.

He obtains an optimal predictor of Ys for the following

superpopulation model ~

E HYi) = ~ Xi (i = 1, 2, ... N)

(2.2)

VHYi) = (i V(Xi),

where the function vis known, and ~ and ri are unknown

constants. A result of special interest discussed by Royal

(1970) is when V(Xi) = Xi, for it leads to the convention

al ratio estimator.of Y,

Under a superpopulation model with certain

specified moments, a general approach that we suggest

is to predict Ys by optimizing a linear function ofsample

observations with a view to achieving minimum model

variance subject to model.unbiasedness. In notations,

we are proposmg

Y = IYi + IdiYi

i s s i s s

as an estimator of

y = ~Yi -f v,
IES

wherein we seek minimisation of the model (~) variance

EH I diYi - Ys )2subjectto the model (x) unbiasedness

i E S
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defined by

EH ~ di yi ) = E~ (Ys) ,

1£ S

where Sdenotes any superpopulation model. It would

not be out of place to point out the Cochran (1977, pp.

158-59) has discussed the optimal estimation under I he

model (2.2) with V(Xi) = Xj, We, however, notice a dis

crepancy in his proof when he invokes the concept of

model variance in two senses at two points, i.e., he min

imises the model variance EsIY - E(y)]2 but, finally,

determines the model variance Es(Y - yi,

Speciflcatlnn of distributional form

Hajek (1981) has considered the prediction of Ys by

speculating on yr, Y2, .." Yo as random variables having

the same normal distribution N(!-,-, (}'2) where I-l and IT
2

arc unknown parameters. For the purpose of predicting

Ys, he suggest the statistics t(Yl, Y2, ..., yo) and then mi

nimises the quantity
?

E[Yo+l + Yo+2 + ... + YN-t(Yl,Y2,·.. ,Yo)t

= E[(N-n)!-,- - t(Yl,Y2, ... , Yo)]2 + (N~0)'(}'2

which amounts to estimation of m ina normal sample,

thus yielding

t(Yl, Y2, ,.., Yn) = (N-n) y.

Hence, Ys is predicted by (N-n)y and Y by Ny.

In another example considered by Hajek (19S1),the

Y: (i = 1, 2, ..., N) terms are assumed to be independent

random variables that have the normal distributions
? .

N(axi, b-Xi) where a, b > 0 are unknown parameters.

Using the same technique as in the preceding case, the

predictor of Ys is obtained as

~ Yi

IES

Ys = ------- ~ Xi

~ Xi IE S

IE S

;1I1d hence, Y will be predicted by (y/x) X which is the

conventional ral io est imator.

Thus, viewed in totality, we can look upon the

predictive est imation as an instrument to judge the face

validity of an existing estimator and, in case, the es

timator does not conform to a predictive form, the

predict ion approach maybe used to const ruct a "predic

tive" estimator with a view to comparing the latter es

timator with the existing one. Further, such an approach

can be invoked to provide an optimal estimator through

recourse to prediction, under a given set of conditions,

of the unknown component, irrespective of whether we

have a fixed population or a supcrpopulation set-up.

3. A case of convergence under F·P and Sop set-ups

The customary ratio-type (biased) estimator isgiven

by

Yi

Yrt L --- X = rX,

n IE s Xi

where r =I/n ~ ri and fj = Yi/Xi, Agrawal and Kulldorff

1£ S

(1987) have indicated that, in the light of the estimator

Yrt, an apt predictor of Yj for i E S under the F-P set-up

would be ,rxi, or alternatively (and equivalently), the

predictor of Y, would be rXs. Thus (1.2) would lead to

Y = LYi + rX, = rX + n(y-rx)

ES

or

Y = rX.+ n/N(y - rx),

where the different notations have the same meaning as

in the preceding sections, Agrawal & Kulldorff (11)K7)

designate Y as predictive. ratio-type estimator of the

population mean and point out that this estimator is op

timal (in the sense ofmodcl unbiased ness and minimum

13



model mean square error) under the following super

population model ~ [see Royall (1970)]:

.EHYi) = 'YXi, V~ (Yi).= Axj2, COV(Yi, Yj) = 0

for i, j = 1, 2, ..., N (i ~ j)

where 'Y and x are parameters and Xi (i =1, 2, ..., N) are

known. Thus the predictive ratio-type estimator y under'

the F-P set-up is optimal under the Sop set-up.
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